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Abstract

All eddy-covariance flux measurements are associated with random uncertainties
which are a combination of sampling error due to natural variability in turbulence and
sensor noise. The former is the principal error for systems where the signal-to-noise ra-
tio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or5

H2O. Where signal is limited, which is often the case for measurements of other trace
gases and aerosols, instrument uncertainties dominate. We are here applying a con-
sistent approach based on auto- and cross-covariance functions to quantifying the total
random flux error and the random error due to instrument noise separately. As with pre-
vious approaches, the random error quantification assumes that the time-lag between10

wind and concentration measurement is known. However, if combined with commonly
used automated methods that identify the individual time-lag by looking for the max-
imum in the cross-covariance function of the two entities, analyser noise additionally
leads to a systematic bias in the fluxes. Combining datasets from several analysers
and using simulations we show that the method of time-lag determination becomes15

increasingly important as the magnitude of the instrument error approaches that of the
sampling error. The flux bias can be particularly significant for disjunct data, whereas
using a prescribed time-lag eliminates these effects (provided the time-lag does not
fluctuate unduly over time). We also demonstrate that when sampling at higher eleva-
tions, where low frequency turbulence dominates and covariance peaks are broader,20

both the probability and magnitude of bias are magnified. We show that the statistical
significance of noisy flux data can be increased (limit of detection can be decreased)
by appropriate averaging of individual fluxes, but only if systematic biases are avoided
by using a prescribed time-lag. Finally, we make recommendations for the analysis and
reporting of data with low signal-to-noise and their associated errors.25
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1 Introduction

1.1 Motivation

Surface layer fluxes of gases such as carbon dioxide (CO2) and methane (CH4) are
frequently determined using the eddy covariance (EC) technique. This approach has
allowed direct measurements of canopy-scale emission/deposition rates which are rou-5

tinely incorporated into models of the carbon cycle and atmospheric chemistry. As with
all measurements, the reported flux has an associated error, which should reflect both
the systematic and random uncertainties of the measurement system. Systematic un-
certainties arise e.g. from having an imperfect measurement system. For example,
bandwidth limitations confine our ability to capture all the turbulent motions that con-10

tribute to the flux, and if uncorrected will introduce a bias. Another obvious systematic
error is introduced by the uncertainty in the calibration standard. Identifying, minimizing
and correcting sources of systematic bias in flux measurements remains an active area
of research (Businger, 1986; Lenschow and Raupach, 1991; Lenschow et al., 1994;
Mann and Lenschow, 1994; Massman, 2000; Massman and Lee., 2002). In contrast,15

random errors do not bias the flux but reduce the overall confidence in an individual
reported value. The main sources of random uncertainties in EC flux measurements
are widely accepted as (i) the stochastic nature of turbulence sampling and (ii) instru-
ment noise and the resolution at which samples are recorded. Numerous studies have
focused on quantifying random uncertainties, ranging from rigorous theoretical inves-20

tigations (Lenschow and Kristensen, 1985) to more practical approaches (Hollinger
and Richardson, 2005). Usually these studies have addressed the problem from the
perspective of an analytical system with good signal-to-noise ratio (SNR) e.g. fluxes
of sensible heat, CO2 or H2O, because for these measurements the uncertainty in
the flux is typically dominated by natural turbulence variability. For example, Maunder25

et al. (2013) demonstrated that for fluxes of CO2 and H2O, the uncertainty associated
with sensor noise was on the order of 1 % as opposed to stochastic errors which ranged
between 20–30 %.
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Increasingly, eddy-covariance is now being applied to measure fluxes of pollutants
which are more difficult to measure precisely. Examples include measurements of
volatile organic compounds (VOCs) (Karl et al., 2002; Langford et al., 2010; Park et al.,
2013), ozone (O3) (Coyle et al., 2009; Muller et al., 2009; Stella et al., 2013), nitric oxide
(NO) (Rummel et al., 2002), nitrogen dioxide (NO2) (Stella et al., 2013), nitrous oxide5

(N2O) (Eugster et al., 2007; Famulari et al., 2010; Jones et al., 2011) and aerosols
(Nemitz et al., 2008; Ahlm et al., 2009; Farmer et al., 2011, 2013). Measuring these
scalars at a rate sufficient to meet the requirements for eddy covariance (i.e. several
Hz) often results in a low SNR and increases the overall uncertainty in the flux.

In addition, for many of these systems, co-location of anemometer and sensor is not10

possible. Closed path sensors require inlet lines that create a time-lag between the
vertical wind velocities (w) and measured scalar concentrations (c). Correcting phase
shifts between w and c is a key step in the calculation of fluxes and is routinely done by
assessing the cross-covariance function between c and w which should reveal a max-
imum (in absolute terms), when the data are fully synchronised. Yet, when the random15

uncertainty is high, as is the case for many of these analysers, the cross-covariance
becomes noisy, confounding the identification of a clear maximum. Through this data
treatment, the low SNR in the concentration measurement, although a random error,
may effectively introduce a systematic bias towards more extreme flux values. Recently,
Taipale et al. (2010) reviewed the various options for determining time-lags with refer-20

ence to VOC fluxes which often have low SNR. Three commonly used approaches
are the maximum (MAX), average (AVG) and prescribed (PRES) methods, which are
all well suited for the automated post-processing of eddy covariance data. Briefly, the
PRES method involves using a constant time-lag, predicted on the basis of the physical
characteristics of the sampling system, i.e. sample flow rate and inner diameter and25

length of the inlet. The MAX method systematically searches for the absolute max-
imum value in the cross-covariance function between w and c within a pre-defined
time window. Finally, the AVG method proposed by Taipale et al. (2010) applies a cen-
tred running mean to the cross-covariance function and then selects the flux from the
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unsmoothed cross-covariance function that corresponds to the maximum of the abso-
lute running mean. The latter method was originally developed for use with VOC data
measured by proton transfer reaction mass spectrometer (PTR-MS), but is generically
applicable to any dataset with low SNR. There are currently no guidelines on the de-
gree of smoothing that should be applied (i.e. the length of the running mean). In their5

study, Taipale et al. (2010) settle on a five second running mean, recognising that this
is an arbitrary length.

With so many options available, it is clear that the calculated flux may differ depend-
ing on the chosen time-lag method. For example, in their study Taipale et al. (2010)
confirm that using a prescribed time-lag may result in a systematic underestimation of10

the flux as the “true” time-lag is likely to vary over time due to fluctuations in pumping
speed but also due to the degree of absorption/desorption with the inlet wall and its
effect on the effective transport time through the tube. Especially for the more water
soluble compounds this may change with humidity and or the aerosol coating of the in-
let. Similarly, systematically searching for a maximum within a noisy cross-covariance15

with multiple local maxima may well bias fluxes towards more extreme values (Laurila
et al., 2012). The AVG method offers something of a compromise between the two
approaches, but some systematic bias may still remain.

We hypothesise that the bias induced by using methods that search for a maximum
in the cross-covariance is closely linked to the random error in the flux, which is in20

part a function of the SNR of the analytical instrumentation and in some cases may be
greater than the systematic error induced from using a prescribed time-lag. In order to
address this hypothesis an appropriate method is needed to quantify the random error
in the flux and separate it into sampling and instrument error components.

1.2 Common approaches for quantifying random flux errors25

Assuming the time-lag is known, the random error of an eddy covariance flux can
be estimated in a variety of ways (Lenschow and Kristensen, 1985). One traditional
method is mainly used to estimate the flux error due to the limited sampling of the
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stochastic nature of turbulence. It is based on the variance of the instantaneous values
of w ′c′ and the integral time scale and is estimated as (Lumley and Pafanofsky, 1964;
Wyngaard, 1973; Lenschow et al., 1994):

RE =

[
2σ2

w ′c′τFc

L

]0.5

(1)

where L is the length of the averaging period in seconds, σ2
w ′c′ is the variance of the5

time-series of instantaneous values of w ′c’ over a typical averaging period (∼ 30 min)
and τFc is the integral time scale, i.e. the average time-scale over which correlation
persists. The integral time scale can be directly estimated by integrating the area under

the auto-covariance of (w ′c′)
′

to the point of first zero crossing. However, this gets
more difficult for cases with high noise levels, as the auto-covariance becomes more10

scattered resulting in multiple zero crossings including some artificially close to the zero
time-lag. This has the consequence that the integral timescale derived by this method
becomes physically meaningless. In theory, additional sensor noise should increase
the random error but in this case the reduction in the estimate of τFc has the knock-on
effect of minimising the error estimate. Consequently, this approach appears unsuitable15

in situations where signal is limited. An alternative approach, for conditions of neutral
stability, is to approximate the integral time scale by dividing the measurement height
(z) above the zero plane displacement (d ), by the mean wind speed (u). Yet, Rannik
et al. (2009) found this method to overestimate the integral scale by a factor of two and
consequently the random flux error by a factor of 1.4.20

Mahrt (1998) offered an alternative method that negates the use of the integral
timescale by splitting the time series into sub-records and formulating the error as the
standard error between sub-records (Mahrt, 1998; Rannik et al., 2009):

RE =

[
σ2

Fc.sub

n

]0.5

, (2)
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such that, n is equal to the number of sub records and σ2
Fc.sub is the variance of the

n different fluxes calculated for the n different sub-records. This random error reflects
a combination of the natural variability of the (genuine) atmospheric concentration and
instrument noise, but since it calculates subsequent flux values, it appears likely that it
is particularly sensitive to low frequency changes.5

In cases where the time-lag is unknown, random flux errors are often assessed
based on the statistical properties of the cross-covariance function used to identify
the time-lag. This technique, first conceived by Wienhold et al. (1995) and developed
further by Spirig et al. (2005), involves taking the SD of the cross-covariance func-
tion at a distance far from the zero time-lag (typically several times the integral time10

scale). In theory, the cross-covariance in this region reflects both random sensor noise
and varibility of the (genuine) atmospheric signal/concentration thus, multiples of the
SD can yield a random flux error at a given confidence interval (e.g. 1.96×σ = 95th;
3×σ = 99th). This technique is described further in Sect. 2.2.

While the cross-covariance method is widely used, few studies have attempted to15

go beyond this and isolate the effects of random sensor noise, mainly due to its negli-
gible influence in many conventional eddy covariance systems. Noticeable exceptions
include the work of Shurpali et al. (1993) who proposed a new technique for estimat-
ing random instrument uncertainty which was popularised in the mid-nineties (Clement
et al., 1995; Billesbach et al., 1998). In this approach the flux of a tracer is measured20

while sampling air with a constant mixing ratio e.g. directly sampling from a gas stan-
dard, and hence any observed flux is purely a reflection of the random instrumental
noise. This method has proved extremely robust, but has the obvious disadvantage of
requiring routine data acquisition to stop while the random instrument uncertainty is
assessed.25

Billesbach (2011) proposed a more practical approach for quantifying random uncer-
tainties from sensor noise. The so-called “random shuffle approach” involves random
re-shuffling of one of the variables in time and thereby removing any covariance be-
tween source/sink terms and transport, leaving only accidental correlations which can
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mostly be attributed to instrument noise. This is an intriguing option, yet, if we consider
a measured time series c, which is made up of some genuine signal (x) as well as
instrumental noise (ε), then the effective amplitude of a time shuffled time series is still
composed of x+ε and therefore the uncertainty is likely overestimated.

More recently Mauder et al. (2013) approximated errors associated with random in-5

strument noise by first calculating the signal-to-noise ratio of the analyser using an
auto-covariance function and then using a basic error propagation to estimate the con-
tribution of that noise to the uncertainty in the cross-covariance:

REnoise =

√√√√(σnoise
C

)2
σ2
w

N
, (3)

In this approach, σnoise
C is the SD of the instrument noise, derived using an auto-10

covariance function (see Sect. 2.1 for details), σ2
w is the variance of the vertical wind

velocity and N is the number of data points in the flux averaging period. This method,
also implemented by Peltola et al. (2014) and Rannik et al. (2015) is relatively simple
to apply but as yet, its effectiveness has not been fully validated for use with EC and
DEC data.15

In this study we explore a further possibility for estimating the portion of random error
attributable to sensor noise by combining the ideas of Billesbach (2011) and Mauder
et al. (2013), focusing in particular on the interplay between random instrument un-
certainty, cross-covariance peak width and the systematic flux bias induced when de-
termining the flux through the use of a cross-covariance function (Taipale et al., 2010;20

Laurila et al., 2012). In understanding this linkage, our aims are to (i) validate the use of
Eq. (3) for use with EC and DEC data sets, (ii) outline an optimal strategy for calculat-
ing and reporting random errors and (iii) for determining time-lags for eddy covariance
data with low SNR and to draw conclusions on the value of flux measurements made
with low SNR.25
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2 Methods

2.1 Quantifying random white noise from analysers

Instrumental noise comes in both structured and unstructured forms. For example, the
50–60 Hz signal from a mains AC power supply might introduce a structured noise into
a time series, and optical fringes often introduce periodic features in optical spectro-5

scopic approaches. By contrast, uncorrelated white noise can result from minor fluc-
tuations in the mechanics of instrument components, or fluctuations in temperature,
pressure or humidity. Here we focus our attention on unstructured, white noise only,
and define the SNR for a given time series c as:

SNR =
σ2
x′

σ2
ε

, (4)10

where σ2
x′ is the variance of the genuine signal of a measured timeseries, c (c = x+ε,

where x is genuine signal and ε is noise) and σ2
ε is the variance of the noise. In order to

establish the relative contributions of both signal and noise components of c we apply
an auto-covariance to c′ of the form:

AC(τ) = (x′ +ε)
(
x′τ +ετ

)
, (5)15

where τ is the time-lag (in number of data points or sampling intervals) and primes
denote fluctuations about the mean. White noise can only contribute to the auto-
covariance at τ = 0 (Lenschow et al., 2000; Maunder et al., 2013) as it has no structure
(i.e. the noise on an individual data point is uncorrelated to the noise of the adja-
cent data points). As the auto-covariance function moves away from zero, the con-20

tribution of instrument white noise is removed and thus the difference between AC(0)
and AC(1) gives an estimate of random instrument noise. The underlying trend in the
auto-covariance function of the genuine signal depends on the biophysical (source/sink
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strength) signature of the compound being measured, and the structure within the tur-
bulence signal which is itself a function of atmospheric stability. The presence of a trend
or “structure” in the auto-covariance is a sign of genuine signal in the data, whereas
an auto-covariance with no underlying trend is the definition of white noise. Where
a genuine signal is present it is therefore necessary to extrapolate the positive auto-5

covariance function back to the zero point. This is typically done using only the first few
points e.g. AC(1–5). The noise can then be estimated as the difference between AC(0)
and AC(1–5 extrapolated) and is depicted in Fig. 1a. In some cases the auto-covariance de-
creases exponentially and therefore it is appropriate to fit these points using an expo-
nential extrapolation as opposed to the linear fit depicted in Fig. 1 and used throughout10

this study.
Using the auto-covariance function as opposed to the auto-correlation function

means the calculated signal and noise are variances and retain their original units.
Taking the square root gives the SD of both the signal and noise components.

The auto-covariance is a convenient method when working in the time domain, but15

alternatives are available when analysing the data in the frequency domain. Figure 1b
shows the variance spectrum for w ′T ′. The red line shows the spectra of unmodified
temperature data from an ultrasonic anemometer and the blue line shows the same
temperature data deteriorated through the addition of Gaussian white noise with a SD
of 1 K. In the frequency domain, on this plot, the fall-off towards higher frequencies in20

the inertial sub-range should follow a −5/3 slope, while white noise follows a +1 slope.
This enables the noise variance to be quantified as the area between solid and dashed
lines in Fig. 1b, although, visually, the area becomes proportional to the noise variance
only on a log-linear plot as opposed to the log-log depiction shown here (Stull, 1988).
It should be noted that the auto-covariance method is unsuitable if the measured time25

series (c) is not used with the original time resolution, e.g. if it was first re-sampled to
a different sampling frequency in order to match the sonic time resolution. Similarly,
this technique does not apply to structured noise, because AC(1) would still be affected
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by such noise. In the auto-covariance approach, structured noise may or may not show
up as a departure from the −5/3 slope at high frequencies.

Throughout this paper we utilise the auto-covariance method in the time domain as
it is readily applicable to both eddy covariance and disjunct eddy covariance (DEC)
datasets.5

2.2 Quantifying random flux errors and the limit of detection

As discussed previously, the precision with which a flux can be measured is commonly
approximated from the properties of the cross-covariance function between w ′ and c′

(fw ′c′). For time-lags τ much different from the true time-lag, the SD of fw ′c′(τ) provides
a measure of the random error affecting the flux (1995; Spirig et al., 2005). Multiplying10

this value (σfw′c′ ×3) gives an estimate of the measurement precision at the 99th con-
fidence intervals which can be used as the flux limit of detection (LoD). This threshold
does not only depend on the SNR of the concentration measurement, but also varies
with wind speed and atmospheric stability. Therefore, for each new averaging period
it is necessary to recalculate the LoD. Whilst this technique allows for the separation15

of a “genuine” flux signature from the general noise of the covariance, the determina-
tion of the SD is often done using somewhat arbitrary boundaries (e.g. −150 to 180
and +150 to 180 s, or defined as some multiple of the integral timescale, Spirig et al.,
2005), and thus as the turbulence structure evolves throughout the day, these limits
may become more or less appropriate. Any correlation between c′ and w ′ within these20

bounds is either purely accidental and reflects the random noise in the time-series or it
is due to organised structures that persist over much longer time intervals suggesting
that turbulence is not stationary or statistically not well covered in the measurement.
Furthermore, a trend in scalar data can result in a cross-covariance which remains
positive or negative over wide ranges rather than the expected fluctuation around zero.25

Figure 2a and b shows the calculation of the LoD via the SD (LoD (Wienhold/Spirig;
blue dashed line) to sensible heat flux data from a forest site, for cases where the
cross-covariance oscillates around zero and is offset from zero, respectively. In the lat-
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ter case (Fig. 2b) many points of the cross-covariance function lie outside the limit of
detection.

A modification of the σfw′c′ approach is to use the root mean squared deviation (RMS)
of fw ′c′ from zero within the same specified region (greyed area – Fig. 2a and b), which
reflects the variability in the cross-covariance function in these regions, but also its off-5

set from zero. Figure 2c shows the LoD for sensible heat flux data calculated using both
the RMSfw′c′ and σfw′c′ methods. The two methods agree very closely for periods where
the cross-covariance fluctuates regularly around zero as in Fig. 2a, but where the co-
variance is predominantly of one sign the SD approach derives significantly smaller
limits of detection, which we believe to be underestimates of the true uncertainty. Im-10

portantly, using linear detrending of the scalar data as opposed to block averaging
reduces this effect but does not completely remove it. For this data set, 14 % of block
averaged data would have been rejected using the LoD based on RMSfw′c′ as opposed
to 4 % using the traditional σfw′c′ method. In contrast, when applying linear detrending
to these data the percentage of data rejected fall to 6 and 3 % for the RMSfw′c′ and the15

σfw′c′ methods, respectively. In light of these findings we utilise the RMSfw′c′ method for
all calculations of the flux LoD in this study. Recommendations for the application of the
RMS method to ozone eddy-covariance flux data are outlined in Nemitz et al. (2015).

2.3 Calculating the effect of instrument noise on the flux error

Analysis of the statistical properties of the cross-covariance function seems to offer20

a practical approach for approximating the total random error of the flux, because the
variability of the cross-covariance function comprises both instrument noise and the
variability of the (genuine) atmospheric concentration. Yet, as discussed above, isolat-
ing the instrumental component of the total random error remains a challenge. Here,
we attempt to untangle the two errors using an approach similar to the “random shuf-25

fle” method of Billesbach (2011). Rather than shuffling the measured scalar time se-
ries to remove any covariance between c′ and w ′, we generate a new time series of
equal length comprised purely of Gaussian white noise. The SD of the white noise
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is set to match that of the instrument noise, ε’, which can be calculated using the
auto-covariance method described in Sect. 2.1. The resulting time series shares the
statistical properties of c′, minus the contribution of the genuine analyser signal x′ and
therefore the effect of the instrument error on the flux error can now be calculated by
applying the RMS method to the cross-covariance of fw ′ε

′.5

The six steps of this method are summarised as follows:

1. Perform an auto-covariance of the scalar prime c′ to obtain the SD of the instru-
ment noise ε′.

2. Generate a time series of white noise with a SD matching that of the instrument
noise.10

3. Calculate the cross-covariance fw ′c′ .

4. Calculate the cross-covariance fw ′ε
′.

5. Apply RMS method to fw ′c′ to obtain total random error (RE).

6. Apply RMS method to fw ′ε
′ to obtain Instrumental random error (REnoise).

In theory this numerical exercise seeks to quantify the same error approximated by15

Maunder et al. (2013) (Eq. 3), whilst making no assumptions on the shape of the dis-
tribution of w ′. Therefore we can use this approach to validate Eq. (3) for use with
both EC and DEC data sets and assess its performance when applied to data sets
with varying levels of SNR. The random instrument errors calculated using both these
approaches are compared in Sect. 3.1.20

Although this proposed technique does not make any assumption about the distribu-
tion of w ′, it does make the assumption that the instrument noise follows a Gaussian
distribution which is not always the case. For example, concentrations have often been
found to be skewed towards larger values. In particular, tracers which show a high de-
gree of variability at low mean concentrations may be log-normally distributed: concen-25

trations are not constrained towards larger values, but cannot physically be negative.
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The combined frequency distribution of w ′ and c′ has been found to be more closely
approximated by a Gram–Charlier equation than a Gaussian distribution (Milne et al.,
2001). In addition, the statistical noise generated by instruments that derive concentra-
tions from count events, e.g. counting particle number, ions (as the PTR-MS does for
VOC fluxes or the Aerosol Mass Spectrometer for submicron aerosol chemical fluxes),5

follows a Poisson distribution, which at low concentrations may act on the flux in a dif-
ferent way to a normally distributed instrument noise.

With this in mind we performed several tests to determine if the covariance between
the vertical wind velocity and a time series of white noise is sensitive to the distribution
of the noise selected. For a single 30 min averaging period the covariance was calcu-10

lated between w ′ and ε′ whereby the artificially generated noise (ε′) was either Gaus-
sian, Poisson or log normally distributed as seen in Fig. 3a. The white noise flux for
the same averaging period was repeatedly calculated, using a prescribed time-lag, for
5000 artificially generated time-series each, and the resulting distributions are shown
in Fig. 3b. All three white noise distribution types are evenly distributed about zero,15

which demonstrates that unstructured white noise creates a random uncertainty in the
flux but does not induce a systematic bias, regardless of its distribution. These findings
provide assurances for eddy covariance systems that induce a Poisson counting noise
that flux biases are not created.

These findings confirm the theoretical considerations of Lenchow and Kristensen20

(1985), that, if the time-lag is known, the presence of uncorrelated noise induces a ran-
dom uncertainty in the flux but does not induce a systematic bias. Nonetheless, this
conclusion does not consider the interplay of this noise with the determination of a time
lag, which is vital for sensors that are spatially separated from the vertical wind veloc-
ity measurement, and its potential to introduce a bias that is a function of the random25

error.
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2.4 Effect of instrument noise on time-lag determination

2.4.1 Signal-to-noise simulations

In order to investigate the influence of unstructured white noise from analysers and
the method of time-lag determination on calculated fluxes, a series of simulations were
performed using 31 days of sensible heat flux data (see Supplement). Time-lags were5

determined using the three main methods outlined above, MAX, AVG and PRES. For
the AVG method, a further ten scenarios were implemented, whereby the running mean
applied to the cross-covariance was increased from 0.5 to 5 s in 0.5 s intervals. In all
scenarios the time-lag was sought within a 10 s window which ranged from −5 to +5 s,
with the true time-lag obviously being 0 s. For the AVG method, the running mean was10

applied over a larger window to ensure the mean was properly centred for all data in the
10 s window. To accurately control the analyser noise level, the SNR of the temperature
data was first quantified using the auto-covariance approach outlined above. The signal
was then deteriorated by adding Gaussian white noise until a target signal-to-noise
ratio was achieved to within a 1 % tolerance. Sensible heat fluxes were calculated using15

block averaging and a reference flux was determined by calculating the flux with zero
lag from the un-manipulated temperature time series. This process was repeated ten
times for temperature data with a signal-to-noise ratio (SNR−1) ranging between 200
and 0.05. In addition, the above simulation was repeated three more times to assess
the impact of adopting disjunct sampling protocols of 2.5, 5 and 7.5 s as is common for20

measurements of VOC fluxes by PTR-MS and aerosol fluxes by Q-AMS. The overall
bias between simulated time series and the reference was determined by the gradient
of the regression between 31 days of reference data vs. those of the simulations.

2.4.2 Peak width simulation

The covariance between the genuine signals of c′ (e.g. x′) and w ′ gives a peak with25

respect to time-lag in the cross-covariance function. Superimposed on top of this peak
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are the contributions from the covariance of the error components of c′ and w ′ e.g.
w ′εc

′
ε. It stands to reason that the broader the peak, the greater the probability of de-

tecting an extreme local maximum i.e. detecting a peak in w ′εc
′
ε on top of the genuine

covariance, w ′c′. Consequently, the peak width of the genuine covariance becomes an
important consideration when assessing the potential bias induced through the choice5

of time-lag determination. In order to assess the sensitivity of flux measurements to the
peak width, we ran a second set of simulations on two identical artificially generated
chirp signals (e.g. a signal that decreases in frequency over time). This type of sig-
nal, generated within LabVIEW (National Instruments, Austin, Texa, USA), was chosen
as a convenient means of producing time series to represent the “genuine” signals of10

x′ and w ′ which contained multiple frequencies. In a series of 12 iterations, Gaussian
white noise (ε′) was added to x′ until a target signal-to-noise ratio was met. In a second
round of iterations the initial frequency of the chirp signal was decreased from 0.075
to 0.005 Hz in 0.005 Hz intervals. As the frequency was reduced, the full width at half
the maximum (FWHM) of the covariance peak increased, resulting in a matrix of fluxes15

calculated using 12 signal-to-noise ratios (100–0.05) vs. 15 covariance peak widths
ranging between 0.9 to 12 s (FWHM). For each point in the matrix the error relative to
the flux calculated from the unmodified chirp signals was calculated.

2.5 Real world data

Simulating the effects of different time-lag determination methods and the effects of20

SNR is a useful exercise, but it is important to verify that these are representative of
real world data. We assessed the performance of each lag method on example data
from a variety of analysers operated in field experiments with varying levels of signal-
to-noise, bearing in mind that the SNR for a given application will depend on concen-
trations and instrument operation. The analysers included ultrasonic anemometer (Gill25

HS), a condensation particle counter (CPC, TSI Model 3776), an Ultra High Sensitivity
Aerosol Spectrometer (UHSAS, PMS, Boulder, USA), tuneable diode laser (TDL, Aero-
dyne Research Inc.) as well as disjunct data from a Proton Transfer Reaction Mass
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Spectrometer (PTR-MS; Ionicon, Innsbruck, Austria). Figure 4, shows the frequency
distribution of the SNR of 30 min averaging periods for each of the analysers.

A detailed description of each of the data sets used is supplied in the Supplement.

3 Results and Discussion

3.1 Calculation of random flux errors5

The procedure for calculating random errors using the auto-covariance approach was
applied to EC fluxes of sensible heat (A) and DEC fluxes of isoprene (B) and acetone
(C), and the results are shown in Fig. 5. The error bars denote the total random error
obtained from the cross-covariance function (3×RMSfw′c′ ) and the central panels show
how that error is divided between the random instrument error (REnoise) and natural10

variability of turbulence and the (genuine) scalar concentrations (REvar). For the fluxes
of sensible heat the random instrumental error is very low reflecting the excellent SNR
of the sonic anemometer. In contrast, the instrumental error for fluxes of acetone is very
large, likely due to the very low atmospheric concentrations of acetone. For isoprene
a clear diurnal cycle is visible which shows the relative contribution of the instrument15

error is largest at night when the isoprene signal is lowest and the signal-to-noise ratio
is low. During the daytime isoprene concentrations increase improving the SNR of the
analyser which sees the error due to natural variability of the (genuine) atmospheric
concentration become the dominant source of uncertainty in the flux measurement.
Overall, absolute errors are larger during the day, when turbulence is larger.20

The lower panels show scatter plots of the random instrument error calculated using
the numerically calculated Gaussian white noise flux vs. the analytical approximation
of Mauder et al. (2013), e.g. Eq. (3). The two methods give consistent results to within
a few percent for both eddy covariance and disjunct eddy covariance data sets. There-
fore, implementation of either method can enable operators to estimate the minimum25

detectable flux for their analyser under a given turbulence regime.
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3.2 Bias effects of different time-lag determination methods

3.2.1 Dependence on signal-to-noise ratio

The simulations applied to sensible heat flux data reveal a distinct relationship between
the signal-to-noise ratio of the analyser and the relative flux bias for both the MAX and
AVG lag determination methods. Figure 6 shows the results for 10 Hz eddy covariance5

data. It is immediately apparent that methods that systematically search for a maxi-
mum (red trace) induce an average positive bias (towards more extreme emission or
deposition) to the reported flux which increases exponentially as the analyser signal
deteriorates. For this dataset, the relative bias can be as much as 18 %. Adopting the
AVG method can significantly reduce this error provided the applied running mean is of10

a suitable length. However, selection of an inappropriate running mean may allow the
bias to persist and can also become negative when overly long. The reason for the neg-
ative lies in the fact that the shape of the peak in the covariance spectrum tends to be
skewed, while the running average of the AVE peak fit is symmetrical. However, theory
cannot currently explain the skewness which is therefore difficult to predict. By contrast,15

the use of a fixed time-lag (for the anemometer temperature data the time-lag is known
to be zero), uncertainty increases as the signal is more and more deteriorated, but to
a smaller degree, and its sign is random.

Figure 7 shows the same set of simulations for data that have disjunct sampling in-
tervals of 2.5 (Fig. 7a), 5 (Fig. 7b) and 7.5 (Fig. 7c) seconds. It is well understood that20

adopting a disjunct sampling approach reduces the statistical sample size and thus
increases the random error (Lenschow et al., 1994; Rinne and Ammann, 2012). How-
ever, it is frequently assumed that the increased random error does not translate to
a systematic bias in the measured fluxes, but our simulations show this not to be the
case. The poor sampling statistics and high instrument noise combined with the MAX25

method for time-lag identification can potentially lead to 100 or even 200 % overestima-
tion in the mean flux.
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The method used to determine the time-lag is a key factor in accurately resolving the
flux as already demonstrated with the 10 Hz eddy covariance data. Additional random
uncertainty incurred from disjunct sampling amplifies the bias at signal-to-noise ratios
less than 100, and in this instance resulting in relative errors of about 300 % at SNR=
0.01 where ∆t is set to 7.5 s. Importantly, this offset appears avoidable if a prescribed5

time-lag is used. When using a prescribed time-lag, individual flux measurements are
biased either high or low compared with the standard eddy-covariance approach that
uses a larger number of data points, but when analysed collectively, the net error is
close to zero. This implies that where the signal-to-noise ratio is very high it may be
necessary to average over more data to reduce the relative random error and thus10

ensure no systematic bias is introduced.
These findings come with the caveat that in these simulations the prescribed time-

lag was a known quantity. When applied to real world data the adopted time-lag must
be a well defined parameter that does not drift significantly over time. Failure to meet
this requirement would undoubtedly result in a systematic underestimation of the flux,15

the magnitude of which would become a function of the cross-covariance peak width.
This is discussed further in Sect. 3.2.2.

Of equal importance is the magnitude of the expected flux. Fluxes may be large
even if the scalar mixing ratios are very noisy and thus the relative error is dependent
on both the signal-to-noise ratio and the magnitude of the flux. Thus, although Figs. 620

and 7 describe the behaviour of the bias, the exact values depend on the magnitude
of the fluxes and also the structure of the underlying turbulence data. However, these
simulations do serve to highlight those aspects that make flux data more vulnerable to
systematic errors.

3.2.2 Influence of peak width25

Figure 8 shows the results of the peak width simulations on two artificially generated,
multi-frequency signals. As well as reiterating the exponential increase in the relative
error associated with the analyser signal-to-noise ratio, this plot serves to demonstrate
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that the FWHM maximum of the covariance peak is an equally important parameter.
Broader covariance peaks result in a higher probability of an extreme maximum being
chosen and therefore both the probability of overestimating the flux and the magnitude
of the bias are closely linked to the peak width. The logarithmic relationship between
turbulence and height mean trace gas and aerosol flux measurements at higher eleva-5

tions above ground are more at risk to systematic bias when the MAX or AVG methods
are employed. Conversely, the probability of systematic underestimation of the flux
through the use of a prescribed time-lag at these measurement heights is somewhat
reduced due to a greater tolerance afforded by the increased peak width. Massman
(2000) and Hörtnagl et al. (2010) recognised that further broadening of the covariance10

peak is possible through the attenuation of scalars through long inlet lines and also
through an increase in the analyser integration time. Therefore, when working on tall
towers above forests or urban canopies one should be aware of the greater potential
for systematic bias and should consider the use of a prescribed time-lag which may
provide the most representative (least biased) estimate of the flux. In general terms,15

when sampling at lower heights such as above crops or grassland, the potential for
bias is lessened, whereas the likelihood of underestimating the flux through the use
of a prescribed time-lag is increased. Nonetheless, during more unstable periods the
potential for a greater influence of lower frequencies in the turbulence spectra cannot
be overlooked (Horst, 2000).20

When using a prescribed time-lag the attenuation of samples through long inlet lines,
adsorption/desorption effects and fluctuations in pump flow rate are not typically con-
sidered. More often, the prescribed value is chosen purely on the basis of the inlet
dimensions and a spot measurement of the flow rate, or through a single test where
a pulse in concentration and wind speed is created near the anemometer/inlet. In these25

cases the potential for underestimating the flux is large. It is therefore good practice to
initially search for the time-lag using the AVG or MAX method and to plot the results as
a histogram or time series. This may confirm that the time-lag was indeed constant or
it may reveal a clear peak or trend in time-lags which can be used to set the prescribed
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value. For instruments that measure multiple species (e.g. mass spectrometers, optical
spectrometers), it may be suitable to use the average time-lag of a species that shows
a clear flux (and thus clear time-lags) as a proxy for the other compounds being mea-
sured. However, difference between gases in terms of solubility and therefore adsorp-
tion/desorption characteristics need to be considered. For example, it is well known that5

for closed-path sensor measurements of CO2/H2O a longer time-lag is found for H2O
than for CO2 (Ibrom et al., 2007). While most appropriate for instruments that measure
multiple species simultaneously, this approach can also be applied to instruments that
measure species sequentially (e.g. the quadrupole-based PTR-MS or AMS) as long as
the scan cycle is accounted for when assigning time-lags.10

3.3 Real world flux measurements with low SNR

3.3.1 Mirroring

When measuring trace gas and aerosol fluxes, the fast sampling requirements of eddy
covariance can result in low SNRs. Working in this region can see the random flux error
equal or even exceed the magnitude of the flux, potentially introducing a bias as dis-15

cussed above. In addition to these effects, where a maximum in the cross-covariance
is still sought, the derived flux may switch between emission and deposition values of
similar magnitude. This phenomenon, which we term “mirroring”, is observed in the ex-
ample flux data shown in Fig. 9 which were obtained using TDL, UHSAS and PTR-MS
instruments and occurs because the random error in the flux is sufficiently large to span20

the zero line. It may be tempting to remove the negative (positive) fluxes on the basis
of biophysical implausibility. For example, when measuring aerosol fluxes where only
deposition fluxes are expected, it would be easy to dismiss positive fluxes as artefacts.
Nevertheless, removal of these points is clearly incorrect and would only serve to bias
the reported averaged data high (cf. Nemitz et al., 2002). Under such circumstances25

the reported flux is predominately driven by fluctuations in the amount of turbulence
which evolves throughout the day to give a diurnal cycle which might be mistaken for
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a flux. Adopting the MAX or AVG methods exagerates the mirroring by systematically
choosing the furthest point away from zero which in the extreme case can result in
the very unatural flux distributions shown in Fig. 10. Adopting the AVG method with
5 s running mean limits this effect to a certain extenent, but a noticible dip around zero
remains. Importantly, the use of a prescribed time-lag eliminates the splitting of data5

from either side of zero to give a much more natural looking flux distribution.
In addition to the calculated fluxes, the red time traces show the Gaussian white

noise flux (FGN), i.e. the cross-covariance between an artificially generated white noise
signal that shares the same SD as the analyser noise. Here, both tracer and Gaus-
sian noise fluxes have been calculated using the MAX method. For acetone, FGN is of10

a similar magnitude which indicates that in this example the fluxes shown are almost
entirely due to coincidental covariance between the vertical wind velocity and instru-
ment noise. In contrast, the range of benzene and particle number fluxes both at least
partially exceeds the Gaussian white noise flux and show sustained period of emission
fluxes indicating the presence of a “genuine” flux which is, for certain periods, distin-15

guishable from the random sensor noise flux. The remaining data would undoubtedly
fall below conventional limits of detection and the individual 30 min flux measurements
would ordinarily be rejected. Yet, the question remains whether any useful information
on the net exchange can still be extracted from data such as these and is discussed in
detail in Sect. 3.3.2. Finally, the TDL N2O fluxes are consistently larger than the Gaus-20

sian white noise flux despite an apparent mirroring in the data. In this case it is likely
that the instrument noise is comprised of both unstructured white noise and structured
noise perhaps from optical fringes which our method does not take into account. It
should be noted, that we here tried to identify data series which showed the effects
of limited SNR. All these instruments obviously can perform better in situations where25

fluxes are larger or where instrumentation parameters are further optimised.
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3.3.2 Limit of detection for individual and averaged fluxes

For data where mirroring is observed there are either no fluxes present or insufficient
statistics to resolve them. If these data are to be utilised at a 30 min time resolution then
they are of little use and should be rejected. In some cases extending the averaging
period may provide the additional statistical information required for resolving the flux,5

but it is also increasingly likely to violate the requirements for stationarity. Yet, in the
literature measured fluxes are seldom utilised at the resolution with which they are
collected, but are more typically aggregated either to establish longer term budgets, by
time of day or by a meteorological parameter such as light or temperature in order to
establish robust relationships for model parameterisations. Where data are averaged,10

presented and utilised in this way, the statistical significance of the average can be
evaluated against the LoD of the ensemble average (LoD) calculated from the LoDs of
the N individual data points that entered the average as:

LoD =
1
N

√√√√ N∑
i=1

LoD2 (6)

For this reason, data that fail averaging period specific LoD criteria, such as the time15

series shown in Fig. 9, should not be discounted out of hand as they may retain useful
information on the net exchange when averaged, but they need to be reported together
with an estimate of the random error.

Figure 11a shows the averaged diurnal fluxes of the acetone time series shown in
Fig. 9 for 1, 7, 14 and 21 day periods (Acton et al., 2015). The shaded areas represent20

the averaged LoD for the same period. Data falling within the shaded area cannot be
resolved by the measurement system, but those points falling outside this area are
statistically significantly different from 0 at the 95th percent confidence interval. The
fluxes were determined using both the MAX and PRES time-lag methods, with the latter
based on the average isoprene time-lag (plus the duty cycle offset). We have already25
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demonstrated that using the MAX method biases the fluxes high and consequently
after two weeks of data are averaged, many of the fluxes appear to exceed the LoD. In
contrast, those fluxes calculated with a prescribed time-lag, which limits the bias, fail to
exceed the LoD even when averaged over a three week period and would be rejected.
This serves as an important example of how the choice of time-lag determination can5

lead to the reporting of a flux which in essence is not statistically different from zero.
Figure 11b shows the same plot for the much longer time series of benzene (Valach

et al., 2015). In this case we observe how the averaged fluxes eventually exceed the
LoD as the number of samples are increased. With this in mind, when targeting trace
gas or aerosol fluxes with instrumentation limited in signal or where the expected fluxes10

are small, it may be prudent to attempt to measure for longer to ensure statistically
robust estimates on the net exchange are obtained. The improvement of LoDs for en-
semble data does not only apply to temporal patterns. For example, Fig. 12 illustrates
how benzene flux data can be averaged as a function of traffic density in order to pa-
rameterise emission rates from vehicles. Provided that the 30 min LoDs are averaged15

according to Eq. (6), flux data with limited SNR can be used in numerous ways that
should go beyond the reporting of average diurnal emission rates.

4 Conclusions and recommendations

In this study we have carefully examined the key factors affecting the analysis of flux
data with high noise level. Clearly, the effect of instrument noise on flux measurements20

has been studied before. Here we have developed a technique to quantify the un-
certainty due to sensor white noise by first quantifying the amount of noise and then
calculating a flux with this noise level. This numerical approach has been used to val-
idate the approximations of Mauder et al. (2013) and shows consistent results when
applied to both EC and DEC data sets. Both these methods can be easily implemented25

into eddy-covariance processing software and share the key advantage over the more
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traditional experimental approach of Shurpali et al. (1993) that measurements do not
need to be interrupted for the assessment to take place.

Most of the earlier analyses of random errors have been carried out under the as-
sumption that the time-lag between wind and concentration measurement is known.
To our knowledge, the systematic bias introduced through the interplay between ran-5

dom sensor noise and the techniques used to determine the time-lag has so far not
been studied very systematically, although the problem has been highlighted in gen-
eral terms in several publications and text books. Taipale et al. (2010) studied the effect
of routines that are based on maximising the absolute value of the cross-covariance for
disjunct data produced by PTR-MS and introduced the AVG approach to reduce this ef-10

fect. We here show that, in general, the effectiveness of this approach depends on the
length of the running mean chosen and the shape of the peak in the cross-covariance
function.

Our work highlights the benefit of constraining the time-lag of the air sampling and
quantifying it as precisely as possible by external means when working with noisy sen-15

sors. In practical terms, this might mean controlling the inlet flow carefully and heating
the inlet line to minimise adsorption/desorption effects, or deriving the time-lag from
a simultaneously measured compound with better SNR. Here we compile a list of gen-
eral recommendations for the collection and processing of eddy covariance data with
limited SNR.20

1. Where possible log anemometer and scalar data to a single computer. This elim-
inates uncertainty in time-lags due to clock drift and should restrict time-lags to
positive time shifts.

2. In-line flow meters should be used to monitor and record fluctuations in pumping
speeds25

3. Use of pressure controllers to limit fluctuations in sample flow rate (this may not
always be possible when high flow rates are required to maintain turbulent flow
and increases the required pumping capacity and therefore power consumption).
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4. For water soluble trace gases, heating of the entire inlet line should be considered
to limit adsorption/desorption effects. Care needs to be taken not to generate
aerosol evaporation artefacts for trace compounds that are distributed between
the gas and aerosol phase according to a temperature dependent equilibrium.

5. On-line monitoring of sample humidity may be necessary to account for absorp-5

tion desorption effects.

6. Use of the MAX method to generate an initial histogram or time series of time-lags,
followed by a second analysis using the PRES approach with a thus informed
predefined time-lag may be preferable to either estimating the time-lag based on
sampling flow rates alone or using the MAX method for final processing. This is10

because time-lags estimated from the sampling flow do not consider the potential
for a phase shift in the cross-covariance due to either signal attenuation or limited
response of the instrumentation (Massman, 2000; Hörtnagl et al., 2010).

7. When reporting processed fluxes, results should be reported even if they are be-
low the single-flux LoD, as long as they fulfil other quality control criteria. How-15

ever, each individual flux value should be reported with its own quantification of
the random uncertainty, so that uncertainties can be combined when fluxes are
averaged.

We conclude that a significant number of fluxes (and derived values such as emis-
sion factors) reported in the literature are biased towards larger values (more distant20

from zero), because insufficient attention has been given the way the time-lag was es-
timated. By contrast, we demonstrate here the value of individual flux measurements
even if they individually fall below the LoD, for obtaining statistically significant longer-
term averages, as long as care has been taken during data processing.

The Supplement related to this article is available online at25

doi:10.5194/amtd-8-2913-2015-supplement.
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Figure 1. Illustration of the two methods for determination of analyser variance attributable to
unstructured white noise, though (a) the use of an auto-covariance function and (b) from the
variance power spectra in the frequency domain. The inset plot in (a) shows how the first few
points of the auto-covariance function can be used to extrapolate the contributions of signal
and noise components at a lag of zero.
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Figure 2. Cross-covariance functions for sensible heat fluxes (a and b) measured above a Dou-
glas fir forest in Speuld, Netherlands, during two example measurement periods. (c) shows the
limit of detection for sensible heat fluxes calculated either by block averaging or linearly de-
trending the vertical wind velocity and temperature data. The LoD were calculated using both
the SD approach (Wienhold/Spirig) and the RMS approach. See text for further details.
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Figure 3. (a) shows the frequency distributions of Gaussian, log-normal and Poisson noise (ε′)
of identical SD. (b) shows the frequency distributions of the flux calculated from the unstructured
white noise over a period of 5000 iterations. The mean average flux for each noise distribution
are marked with dashed lines, which are all close to zero and consistently confirm that no
systematic bias is introduced to a flux measurement regardless of the type of noise used.
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Figure 4. Signal-to-noise ratios of typical instruments used for the flux measurement of various
trace gases and aerosols. Analysers include a sonic anemometer (temperature) and PTR-MS
(isoprene, methanol and acetone) operated above a mixed Oak forest at a height of 32 m and
above a city (benzene). Particle number concentrations were measured by a CPC and UHSAS
(single size bin) above a Douglas fir forest and N2O measurements were made above a grass
land field in 2003 using the first generation of tuneable diode laser.
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Figure 5. Sensible heat (a), isoprene (b) and acetone (c) fluxes and accompanying errors.
Upper panels show the measured fluxes with error bars denoting the total random error (RE).
The central panels show how the total random error can be divided errors associated with
instrument noise (red, REnoise) and the variability in turbulence at the genuine atmospheric
concentration (blue, REvar). The lower panels show scatter plots of the random instrument
noise calculated using the analytical approximation of Mauder et al. (2013) and the numerical
method outlined in this study.
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Figure 6. The average relative bias of a half-hourly flux as a function of the analyser signal-to-
noise ratio for 31 days of 10 Hz eddy covariance sensible heat flux data acquired at a height of
32 m. The signal-to-noise ratio of the temperature data was deteriorated to match pre-defined
limits. The errors shown are relative to the sensible heat flux calculated using the unmodified
temperature data and a constant (0 s) time-lag.
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Figure 7. The average relative bias of a half-hourly flux as a function of the analyser signal-to-
noise ratio for 31 days of 10 Hz disjunct eddy covariance data compared with the standard eddy-
covariance result. (a), (b) and (c) correspond to disjunct sampling intervals of 2.5, 5 and 7.5 s,
respectively. The signal-to-noise ratio of the temperature data was deteriorated to match pre-
defined limits (see text for details). The errors shown are relative to the sensible heat flux (with
no disjunct interval e.g. standard eddy covariance) which was calculated using the unmodified
temperature data and a constant (0 s) time-lag.
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Figure 8. Image plot depicting the exponential relationship between the average relative bias
and both the signal-to-noise ratio of the analyser and the full width half maximum (FWHM) of
the cross-covariance function peak for simulated eddy covariance flux data calculated using
the MAX time-lag method.
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Figure 9. An example of “mirroring” in eddy covariance data with low SNR processed with the
MAX time-lag method. The data were obtained by TDL (a), UHSAS (Data from a single size
bin – b) and PTR-MS (c and d) instruments during four separate measurement campaigns. Red
circles show a flux calculated from a Gaussian white noise time series based on the signal-to-
noise ratio of the raw data and also calculated using the MAX time-lag method.
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Figure 10. Distributions for benzene fluxes calculated using the MAX, AVG [5 s] and PRES
time-lag methods. The data had an average signal-to-noise ratio of 0.09 and ranged between
0.007 and 0.24 at the 5th and 95th percentiles.
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Figure 11. (a) Averaged diurnal profiles of acetone flux data obtained using a quadrupole PTR-
MS. Increasing the number of data points averaged does not bring the PRES flux above the
LoD (Greyed area indicating the LoD at the 95th percentile) indicating no detectable flux. By
contrast, the MAX fluxes which are biased high, show some periods above the LoD which are
an artefact of the MAX time-lag determination method. (b) Averaged diurnal profiles of benzene
flux data obtained using a quadrupole PTR-MS. Increasing the number of data points averaged
from 14 to 56 is sufficient to distinguish the flux calculated with a prescribed time-lag from
the LoD (Greyed area indicating the LoD at the 95th percentile) and indicating a clear flux of
benzene.
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Figure 12. Benzene flux measurements calculated using a prescribed time-lag and averaged
as a function of traffic density. Data points falling within the greyed area are down weighted in
the fit as opposed to removing them completely which would bias the overall data set.
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